Abstract: | A series of low‐ether‐content polyether–polyester block copolymers with amide linkages were synthesized. Their crystallization kinetics and mechanisms were investigated. The crystallization kinetics were analyzed via Avrami treatment; an average value of 1.8 for the Avrami index was thus obtained. Athermal nucleation was evidenced by observations of a linear boundary between impinged spherulites under polarized light microscopy and transmission electron microscopy. The development of spherulitic morphology with a hedgehog texture was attributed to the mechanism of lamellar branching. On the basis of the morphological observations and Avrami analysis, a crystallization mechanism through a heterogeneous nucleation process with homogeneous lamellar branching was proposed. No regime transition was found for polyether–polyesters in the examined temperature ranges, and the crystallization was identified as regime I kinetics on the basis of a Lauritzen Z test. The copolymerization of poly(ether amide)s with polyesters led to a significant suppression of the crystallization rate of polyester crystals. The suppression was explained as the result of a dilution effect in nucleation combined with an increasing nucleation barrier. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2469–2480, 2001 |