首页 | 本学科首页   官方微博 | 高级检索  
     


Valorization of industrial waste lignin via pyrolysis in the presence of additives: Formation,characterization, and application of fuel valued bio-oil and activated char
Authors:Dayaram Tulsiram Sarve  Raju Dutta  Abhishek Rastogi  Jayant D. Ekhe
Affiliation:Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
Abstract:The annual production of over 50 million tonnes of industrial waste kraft lignin and scant utilization invites environmental concern. To explore the potential of simultaneously produced bio-oil and modified char (Activated char), lignin from industrial effluents was subjected to pyrolytic degradation at 380 °C using various additives, viz., H3BO3, ZnCl2, and KOH yielding encouraging quantities of bio-oils besides substantial quantities of char. Quantitative and qualitative analyses of gaseous products (by GC-TCD) indicated a mixture of CO, CO2, H2, and methane, with some variation in volumetric composition suggesting potential for gaseous fuel/syngas. Gaseous products obtained in the presence of H3BO3 have the highest methane percentage. The bio-oils obtained in the presence of H3BO3, ZnCl2, KOH, and only pure lignin under otherwise similar conditions were respectively 37%, 21%, 27%, and 11 wt%. In all cases, mainly bio-oils contain phenols, cyclic esters, and carboxylic acids, as indicated by GC-MS analysis. Elemental (C, H, O) Analyses of bio-oils obtained in the presence of (H3BO3, ZnCl2, and KOH) indicated decreasing oxygen content compared to original lignin, suggesting their prima facie potential to lead to fuel additives/supplements. Similarly, the Char obtained in the presence of H3BO3, ZnCl2, KOH, and only pure lignin were respectively, 40%, 53%, 48%, and 33 wt% with a high calorific value. Char obtained from KOH application demonstrated good uptake of Carbofuran (pesticide) from the aqueous solution. Less modified, cost-effective activated char was characterized using FTIR, TG-DTA, XRD, SEM, and BET-BJH, indicating 188.798 m2/g; this explores the role of KOH to form a microporous structure. Pseudo-second-order kinetics explain chemisorption to be dominant in the adsorption process. Thus, pyrolysis at selected temperatures/additives/and further treatments provides a much better way to utilize industrial waste lignin.
Keywords:Industrial waste kraft lignin  Pyrolytic degradation  Bio-oil  Activated char  Carbofuran  Adsorption study
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号