首页 | 本学科首页   官方微博 | 高级检索  
     


Surface analysis of erodible multilayered polyelectrolyte films: nanometer-scale structure and erosion profiles
Authors:Fredin Nathaniel J  Zhang Jingtao  Lynn David M
Affiliation:Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA.
Abstract:Atomic force microscopy (AFM) and scanning electron microscopy (SEM) coupled with ellipsometry have been used to characterize the microscale and nanoscale structures of erodible multilayered films fabricated from degradable polyamine 1 and either sodium poly(styrene sulfonate) (SPS) or plasmid DNA. Striking differences were found in the topography, structures, and erosion profiles of these two materials upon incubation in PBS buffer at 37 degrees C. For films fabricated from SPS, AFM data are consistent with an erosion process that occurs uniformly without the generation of holes or pits over large, micrometer-scale areas. By contrast, films fabricated from plasmid DNA undergo structural rearrangements to present surface-bound particles ranging in size from 50 to 400 nm. Additional characterization of these particulate structures by SEM suggested that they are interpenetrated with or fused to underlying polyelectrolyte layers on the silicon surface, providing a potential mechanism to manipulate the adhesive forces with which these particles are bound to the surface. The erosion profile observed for polymer 1/SPS films suggests that it may be possible to design assemblies that release two film components with well-defined release kinetics. In the context of gene delivery, the presentation of condensed DNA as nanoparticles at these surfaces may be advantageous with respect to stimulating the internalization and processing of DNA by cells. A quantitative understanding of the factors influencing the fabrication, structure, and erosion profiles of these materials will be useful for the design of multilayered assemblies for specific applications in which controlled film erosion or the release of therapeutic materials is desired.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号