首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Weighted overconstrained least-squares mixed finite elements for hyperelasticity
Authors:Alexander Schwarz  Karl Steeger  Jörg Schröder
Institution:Institute of Mechanics, Faculty of Engineering, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
Abstract:The present contribution aims to improve the least-squares finite element method (LSFEM) with respect to the approximation quality in hyperelasticity. We consider a geometrically nonlinear elastic setup and here especially bending dominated problems. Compared with other variational approaches as for example the Galerkin method, the main drawback of least-squares formulations is the unsatisfying approximation quality in terms of accuracy and robustness of especially lower-order elements, see e.g. SCHWARZ ET AL. 1]. In order to circumvent these problems, we introduce an overconstrained first-order stress-displacement system with suited weights. For the interpolation of the unknowns standard polynomials for the displacements and vector-valued Raviart-Thomas functions for the approximation of the stresses are used. Finally, a numerical example is presented in order to show the improvement of performance and accuracy. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号