首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The <Emphasis Type="Italic">Mycobacterium tuberculosis</Emphasis> Rv2540c DNA sequence encodes a bifunctional chorismate synthase
Authors:Fernanda Ely  José ES Nunes  Evelyn K Schroeder  Jeverson Frazzon  Mário S Palma  Diógenes S Santos  Luiz A Basso
Institution:1.Centro de Pesquisas em Biologia Molecular e Funcional,Pontifícia Universidade Católica do Rio Grande do Sul,Porto Alegre,Brazil;2.Instituto de Ciência e Tecnologia de Alimentos,Universidade Federal do Rio Grande do Sul,Porto Alegre,Brazil;3.Departamento de Biologia/CEIS,Universidade Estadual Paulista,Rio Claro,Brazil
Abstract:

Background

The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product.

Results

In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (Mt CS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant Mt CS. The bifunctionality of Mt CS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMNox and Mt CS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting.

Conclusion

This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of Mt CS and should thus pave the way for the rational design of antitubercular agents.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号