首页 | 本学科首页   官方微博 | 高级检索  
     


Axial instability of rotating rods revisited
Authors:D. H. Hodges  R. R. Bless  
Affiliation:

* School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150, U.S.A.

Lockheed Engineering and Science Co., Hampton, VA 23666, U.S.A.

Abstract:For strain sufficiently small such that Hooke's Law is valid, it is shown that only a linear model for axial deformation of rotating rods can be derived. As discussed in the literature, this linear model exhibits an instability when the angular speed reaches a certain critical value. However, unless this linear model is valid for large strain, it is impossible to determine whether this instability really exists; because, as the angular speed is increased, the strain becomes large well short of the critical speed. Next, axial deformation of rotating rods is analyzed using two strain energy functions to model non-linear elastic behavior. The first of these functions is the usual quadratic strain energy function augmented with a cubic term. With this model it is shown that no instability exists if the non-linearity is stiffening (i.e. if the coefficient of the cubic term is positive), although the strain can become large. If the non-linearity is of the softening variety, then the critical angular speed drops as the degree of softening increases. Still, the strains are large enough that, except for rubber-like materials, a non-linear elastic model is not likely to be appropriate. The second strain energy function is based on the square of the logarithmic strain and yields a softening model. It quite accurately models the behavior of certain rubber rods which exhibit the instability within the validated range of elongation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号