首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the orbital stability of a periodic solution of the equations of motion of a Kovalevskaya gyroscope
Authors:A Z Bryum  A Ya Savchenko
Abstract:The sufficient conditions for the orbital stability of a periodic solution of the equations of motion of a Kovalevskaya gyroscope in the case of Bobylev-Steklov integrability are obtained.

It is difficult to expect Lyapunov stability for the unsteady motions of a heavy solid having a fixed point since a dependence of the vibrations frequency on the initial conditions is characteristic for the simplest of them, i.e. periodic motions /1/. Moreover, a rougher property of periodic solutions of the Euler-Poisson equations, orbital stability /2/, is not the subject of special investigations in the dynamics of a solid. The algorithm of the present investigation utilizes the treatment ascribed Zhukovskii /3/ of orbital stability as the Lyapunov stability of motion for a special selection of the variable playing the part of time (see /4/ also) and the Chetayev method /5/ of constructing Lyapunov functions from the first integrals of the equations of perturbed motion. This latter circumstance enables the Chetayev method to be put in one series with the methods used in /1, 4, 6–9/, etc.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号