Abstract: | Long-range interaction energy between two hydrogen atoms has been computed in the second order of the perturbation theory. All states of the system arising when one of the atoms is in the 1s and the other in the 2s or 2p state have been considered. The energy represented by a series expansion in inverse powers of the internuclear distance, R, has been computed up to the terms in R?8. The results are believed to give reliable interaction energies for R > 15 a.u. Accurate interaction energy for two ground-state hydrogen atoms has also been obtained up to the terms in R?10. Results for the B′ 1∑ state are employed to discuss the experimental ground-state dissociation energy of H2, D2, and HD. For H2 all values of the dissociation energy obtained from various experimental absorption limits, by using the computed potential energy curve to separate off the effect of rotation, are shown to be satisfactorily consistent. The resulting total energy of H2 is, however, higher than the most accurate theoretical value. |