首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Intermolecular enolate heterocoupling: scope, mechanism, and application
Authors:DeMartino Michael P  Chen Ke  Baran Phil S
Institution:Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
Abstract:This full account presents the background on, discovery of, and extensive insight that has been gained into the oxidative intermolecular coupling of two different carbonyl species. Optimization of this process has culminated in reliable and scalable protocols for the union of amides, imides, ketones, and oxindoles using soluble copper(II) or iron(III) salts as oxidants. Extensive mechanistic studies point to a metal-chelated single-electron-transfer process in the case of copper(II), while iron(III)-based couplings appear to proceed through a non-templated heterodimerization. This work presents the most in-depth findings on the mechanism of oxidative enolate coupling to date. The scope of oxidative enolate heterocoupling is extensive (40 examples) and has been shown to be efficient even on a large scale (gram-scale or greater). Finally, the method has been applied to the total synthesis of the unsymmetrical lignan lactone (-)-bursehernin and a medicinally important 2,3-disubstituted succinate derivative.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号