首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffusion-controlled penetration of polymethyl methacrylate sheets by monohydric normal alcohols
Authors:L Nicolais  E Drioli  HB Hopfenberg  G Caricati
Institution:Istituto di Principi di Ingegneria Chimica, Università di Napoli, Naples 80125 Italy
Abstract:The kinetics of ethanol, n-propanol, and n-butanol penetration, sorption, and dimensional swelling in 2 mm poly(methyl methacrylate) sheets were determined over the temperature range 50–95°C. At 50°C, Case II relaxation-controlled transport dominated the observed sorption and penetration kinetics for all three alcohols. At higher temperatures, diffusion of swelling penetrant to the relaxing boundary contributes increasingly to the observed sorption kinetics. In addition, as the temperature is raised, the completion of sorption lags significantly behind the penetration of the relaxing boundary to the sheet midplane. p]The activation energy describing low temperature penetration is significantly higher than the activation energy describing the temperature dependence of high temperature penetration. A distinct transition in the penetration kinetics is apparent for all three alcohols at approximatively 65°C. Independent Clash—Berg determinations of the Tg of the alcohol-swollen sheets indicate that the transition in behaviour is not related to a thermal transition in the polymer, but rather to the generation of diffusional resistance in the high temperature penetration experiments which is comparable to the otherwise rate-determining Case II relaxations dominant in low temperature penetration. At high temperatures, the overall activation energy reflects the combination of diffusional absorption and the more highly activated relaxation-controlled transport. At low temperatures, diffusion of penetrant to the relaxing boundary is rapid compared with the slow, rate determining relaxations and, therefore, the concentration of penetrant is everywhere uniform within the already swollen shell. The extra-ordinarily high apparent activation energy describing the temperature dependence of the initial sorption rate at low temperature reflects the endothermic enthalpy of sorption of alcohols in PMMA as well as the strong coupling between relaxation rate and the penetrant concentration driving the rate determining relaxations. p]Clash—Berg measurements of the temperature dependence of the ten second shear moduli in partially swollen sheets, completely swollen sheets, and unswollen sheets suggest a Tg of approximatively 40°C in the alcohol-swollen PMMA. Moreover, an analysis of the Clash—Berg measurements suggests that the properties of the swollen regions of partially penetrated sheets are identical to the properties of the completely swollen sheets.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号