首页 | 本学科首页   官方微博 | 高级检索  
     


Probing the transition state ensemble of a protein folding reaction by pressure-dependent NMR relaxation dispersion
Authors:Korzhnev Dmitry M  Bezsonova Irina  Evanics Ferenc  Taulier Nicolas  Zhou Zheng  Bai Yawen  Chalikian Tigran V  Prosser R Scott  Kay Lewis E
Affiliation:Department of Medical Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.
Abstract:The F61A/A90G mutant of a redesigned form of apocytochrome b562 folds by an apparent two-state mechanism. We have used the pressure dependence of 15N NMR relaxation dispersion rate profiles to study the changes in volumetric parameters that accompany the folding reaction of this protein at 45 degrees C. The experiments were performed under conditions where the folding/unfolding equilibrium could be studied at each pressure without addition of denaturants. The exquisite sensitivity of the methodology to small changes in folding/unfolding rates facilitated the use of relatively low-pressure values (between 1 and 270 bar) so that pressure-induced changes to the unfolded state ensemble could be minimized. A volume change for unfolding of -81 mL/mol is measured (at 1 bar), a factor of 1.4 larger (in absolute value) than the volume difference between the transition state ensemble (TSE) and the unfolded state. Notably, the changes in the free energy difference between folded and unfolded states and in the activation free energy for folding were not linear with pressure. Thus, the difference in the isothermal compressibility upon unfolding (-0.11 mL mol(-1) bar(-1)) and, for the first time, the compressibility of the TSE relative to the unfolded state (0.15 mL mol(-1) bar(-1)) could be calculated. The results argue for a TSE that is collapsed but loosely packed relative to the folded state and significantly hydrated, suggesting that the release of water occurs after the rate-limiting step in protein folding. The notion of a collapsed and hydrated TSE is consistent with expectations based on earlier temperature-dependent folding studies, showing that the barrier to folding at 45 degrees C is entropic (Choy, W. Y.; Zhou, Z.; Bai, Y.; Kay, L. E. J. Am. Chem. Soc. 2005, 127, 5066-5072).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号