首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffraction of weak shock waves by deformed bodies submerged in a liquid
Authors:A G Gorshkov
Abstract:Conclusion On the basis of an analysis of theoretical and experimental data obtained up to now by various investigators, we can note the following major advances in the field of the interaction of shock waves with barriers submerged in a liquid:Exact solutions have been obtained for problems in the diffraction of acoustic shock waves by rigid and stationary bodies of specified shape (plates, wedges, cones, parabolic, elliptical, and circular cylinders, spheres, paraboloids of revolution); approximate schemes have been worked out for estimating hydrodynamic loads, making it possible to investigate various stages of the interaction of shock waves with elastic shells of revolution and solid bodies; studies have been conducted in the exact formulation of the interaction of plane (spherical) nonstationary waves with elastic barriers (unbounded plates, plates in a screen, infinitely long thin-walled and thick-walled cylindrical shells, closed thin-walled and thick-walled spherical shells); an exact solution has been found for the internal problems in the case of cavities (circular and elliptical cylinders, spheres, spheroids) and elastic shells of revolution (infinitely long cylindrical and closed spherical shells); methods have been worked out for the approximate determination of the parameters of objects (elastic thin-walled infinitely long cylindrical and closed spherical shells) from reflected echo signals; estimates have been given for the influence of the structural characteristics of an object (support, concentrated masses), the nonlinear properties of interacting media, cavitation in liquid, and plastic deformations in the barrier material on the process of hydrodynamic interaction.We should also mention the main lines of further investigation and the problems which require solution: designing new experimental apparatus and measuring complexes for studying the nonstationary behavior of deformed bodies and structures in a liquid; solution of problems in diffraction by oonical and cylindrical shells of finite length, and by compound structures of complicated form in which account is taken of the structural characteristics and the internal elements; calculation of three-layer and multilayer shells acted upon by shock waves, taking account of the transverse compression of the filler; construction of more exact schemes (models) for the nonlinear and cavitation-type interaction of waves with barriers; development of numerical and combined methods for the solution of the problems in hydroelasticity.Mechanics Institute, Moscow State University. Translated from Prikladnaya Mekhanika, Vol. 16, No. 5, pp. 3–11, May, 1980.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号