Abstract: | The nonstationary behavior of three-layer cylindrical shells under an axisymmetric loading is considered with the application of hypotheses to each layer. Independent postulations are proposed for the approximation of displacements and transverse strains across the thickness of each layer. Reissner's variational principle for dynamic processes is used to derive the motion equations. The problem of the dynamic deformation of three-layer cylindrical shells under a nonstationary loading is considered in the case where the ends of the shells are rigidly fixed. The values obtained were compared with those predicted from hypotheses relating to the whole packet of the structure (the Timoshenko-type theory of multilayered shells). S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 35, No. 8, pp. 3–9, August, 1999. |