首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of substitutents on the strain energies of small ring compounds
Authors:Bach Robert D  Dmitrenko Olga
Institution:Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA. rbach@udel.edu
Abstract:The effect of substitutents on the strain energy (SE) of cyclic molecules is examined at the CBS, G2, and G2(MP2) levels of theory. Alkyl substitutents have a meaningful effect upon the SE of small ring compounds. gem-Dimethyl substitution lowers the strain energy of cyclopropanes, cyclobutanes, epoxides, and dimethyldioxirane (DMDO) by 6-10 kcal/mol relative to an unbranched acyclic reference molecule. The choice of the reference compound is especially important for geminal electronegative substitutents. The SE of 1,1-difluorocyclopropane is estimated to be 20.5 kcal/mol relative to acyclic reference molecule 1,3-difluoropropane but is 40.7 kcal/mol with respect to the thermodynamically more stable (DeltaE = -20.2 kcal/mol) isomeric reference compound 2,2-difluoropropane. The SE of dioxirane (DO) is estimated to be approximately 18 kcal/mol while the SE of DMDO is predicted to be approximately equal to 11 kcal/mol by using homodesmotic reactions that maintain a balanced group equivalency. The total energy (CBS-APNO) of DMDO is 2.6 kcal/mol lower than that of isomeric 1,2-dioxacyclopentane that has an estimated SE of 5 kcal/mol. The thermodynamic stability of DMDO is a consequence of its relatively strong C-H (BDE = 102.7 kcal/mol) and C-CH(3) (BDE = 98.9 kcal/mol) bonds. By comparison, the calculated sec-C-H and -C-CH(3) G2 bond dissociation energies in propane are 100.3 and 90.5 kcal/mol.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号