首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study on micronozzle flow and propulsion performance using DSMC and continuum methods
Authors:Minghou Liu  Xianfeng Zhang  Genxuan Zhang  Yiliang Chen
Institution:(1) Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, 230027, China
Abstract:In this paper, both DSMC and Navier–Stokes computational approaches were applied to study micronozzle flow. The effects of inlet condition, wall boundary condition, Reynolds number, micronozzle geometry and Knudsen number on the micronozzle flow field and propulsion performance were studied in detail. It is found that within the Knudsen number range under consideration, both the methods work to predict flow characteristics inside micronozzles. The continuum method with slip boundary conditions has shown good performance in simulating the formation of a boundary layer inside the nozzle. However, in the nozzle exit lip region, the DSMC method is better due to gas rapid expansion. It is found that with decreasing the inlet pressure, the difference between the continuum model and DSMC results increases due to the enhanced rarefaction effect. The coefficient of discharge and the thrust efficiency increase with increasing the Reynolds number. Thrust is almost proportional to the nozzle width. With dimension enlarged, the nozzle performance becomes better while the rarefaction effects would be somewhat weakened.The project supported by the National Natural Science Foundation of China (10372099). The English text was polished by Boyi Wang
Keywords:Micronozzle  DSMC  Continuum model  Slip boundary condition  Thrust efficiency
本文献已被 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号