首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Module assembly for protein-surface recognition: geranylgeranyltransferase I bivalent inhibitors for simultaneous targeting of interior and exterior protein surfaces
Authors:Machida Shinnosuke  Usuba Kakeru  Blaskovich Michelle A  Yano Akiko  Harada Kazuo  Sebti Saïd M  Kato Nobuo  Ohkanda Junko
Institution:The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, Japan.
Abstract:Synthetic chemical probes designed to simultaneously targeting multiple sites of protein surfaces are of interest owing to their potential application as site specific modulators of protein-protein interactions. A new approach toward bivalent inhibitors of mammalian type I geranylgeranyltransferase (GGTase I) based on module assembly for simultaneous recognition of both interior and exterior protein surfaces is reported. The inhibitors synthesized in this study consist of two modules linked by an alkyl spacer; one is the tetrapeptide CVIL module for binding to the interior protein surface (active pocket) and the other is a 3,4,5-alkoxy substituted benzoyl motif that contains three aminoalkyl groups designed to bind to the negatively charged protein exterior surface near the active site. The compounds were screened by two distinct enzyme inhibition assays based on fluorescence spectroscopy and incorporation of a (3)H]-labeled prenyl group onto a protein substrate. The bivalent inhibitors block GGTase I enzymatic activity with K(i) values in the submicromolar range and are approximately one order of magnitude and more than 150 times more effective than the tetrapeptide CVIL and the methyl benzoate derivatives, respectively. The bivalent compounds 6 and 8 were shown to be competitive inhibitors, suggesting that the CVIL module anchors the whole molecule to the GGTase I active site and delivers the other module to the targeting protein surface. Thus, our module-assembly approach resulted in simultaneous multiple-site recognition, and as a consequence, synergetic inhibition of GGTase I activity, thereby providing a new approach in designing protein-surface-directed inhibitors for targeting protein-protein interactions.
Keywords:enzymes  GGTase I  inhibitors  proteins  proteomimetics
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号