首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A flow control mechanism in wing flapping with stroke asymmetry during insect forward flight
Authors:Yongliang?Yu  Email author" target="_blank">Binggang?TongEmail author
Institution:(1) Department of Physics, Graduate School of the Chinese Academy of Sciences, Beijing, 100039, China;(2) Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
Abstract:A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during insect forward flight. It is revealed that the aerodynamic asymmetry between the downstroke and the upstroke due to stroke-asymmetrical flapping is a key to understand the flow physics of generation and modulation of the lift and the thrust. Predicted results for examples of given kinematics validate more specifically some viewpoints that the wing lift is more easily produced when the forward speed is higher and the thrust is harder, and the lift and the thrust are generated mainly during downstroke and upstroke, respectively. The effects of three controlling parameters, i.e. the angles of tilted stroke plane, the different downstroke duration ratios, and the different angles of attack in both down- and up-stroke, are further discussed. It is found that larger oblique angles of stroke planes generate larger thrust but smaller lift; larger downstroke duration ratios lead to larger thrust, while making little change in lift and input aerodynamic power; and again, a small increase of the angle of attack in downstroke or upstroke may cause remarkable changes in aerodynamic performance in the relevant stroke.The project supported by the National Natural Science Foundation of China (10072066, 90305009) and the Chinese Academy of Sciences (KJCX-SW-L04, KJCX2-SW-L2)The English text was polished by Ron Marshall.
Keywords:Insect forward flight  Wing flapping  Stroke asymmetry  Oblique stroke plane  Theoretical modeling
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号