首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Design of high-average-power near-millimeter free electron laseroscillators using short period wigglers and sheet electron beams
Authors:Booske  JH Radack  DJ Antonsen  TM  Jr Bidwell  SW Carmel  Y Destler  WW Freund  HP Granatstein  VL Latham  PE Levush  B Mayergoyz  ID Serbeto  A
Institution:Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI;
Abstract:The design and feasibility of a 1-MW continuous-wave (CW) free electron laser (FEL) oscillator are reviewed. The proposed configuration includes a short-period (Iw~ 1 cm) planar wiggler, a sheet electron beam, a 0.5-1.0-MV thermionic electron gun, a hybrid waveguide/quasi-optical resonator, commercial DC power supplies, and a depressed collector. Cavity ohmic RF losses are estimated to be extremely low (⩽10-100 W/cm2) at 1/MW output power, while thermal heat transfer studies conservatively indicate that wall cooling up to 1500 W/cm2 should be possible. Experiments have convincingly verified theory and simulations which predict that negligible body currents will be achievable with low-emittance low-space-charge sheet beams. High-voltage sheet beam gun design studies indicate that the required beam quality can be achieved with CW compatible devices. The spent beam energy distribution is consistent with highly efficient spent beam energy recovery, and the proposed resonator cavity should provide mode discrimination and beam/RF separation capability
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号