首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oil-induced aggregation of block copolymer in aqueous solution
Authors:Ma Jun-He  Wang Yun  Guo Chen  Liu Hui-zhou  Tang Ya-lin  Bahadur Pratap
Institution:Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100080, PR China.
Abstract:The oil-induced aggregation behavior of PEO-PPO-PEO Pluronic P84 (EO)19(PO)39(EO)19] in aqueous solutions has been systematically investigated by 1H NMR spectroscopy, freeze-fracture transmission electron microscopy (FF-TEM), and dynamic light scattering (DLS). The critical micellization temperature (CMT) for P84 in the presence of oils decreases with increasing oil concentration. The effectiveness of various oils in decreasing the CMT of block copolymer follows the order m-xylene (C(8)H(10)) > toluene (C(7)H(8)) > benzene (C(6)H(6)) > n-octane (C(8)H(18)) > n-hexane (C(6)H(14)) approximately cyclohexane (C(6)H(12)). It was found that the amount of anhydrous PO methyl groups increases whereas the amount of hydrated PO methyl groups decreases upon the addition of oils. At low oil concentration, the oil molecules are entrapped by the micellar core, but as the oil concentration increases above a certain value, the micellar core swells significantly as a result of the penetrated oil molecules, and much larger aggregates are formed. Intermolecular rotating-frame nuclear Overhauser effect (ROE) measurements between P84 and benzene were performed at 10 and 40 degrees C. The specific interaction between benzene and the methyl groups of PPO was determined, and it was observed that the interaction site remained unchanged as the temperature was increased.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号