首页 | 本学科首页   官方微博 | 高级检索  
     


Inside Cover: Aquation Is a Crucial Activation Step for Anticancer Action of Ruthenium(II) Polypyridyl Complexes to Trigger Cancer Cell Apoptosis (Chem. Asian J. 2/2016)
Authors:Meng Li  Lanhai Lai  Zhennan Zhao  Tianfeng Chen
Affiliation:Department of Chemistry, Jinan University, Guangzhou, P. R China
Abstract:Aquation has been proposed as crucial chemical action step for ruthenium (Ru) complexes, but its effects on the action mechanisms remain elusive. Herein, we have demonstrated the aquation process of a potent Ru polypyridyl complex (RuBmp=[RuII(bmbp)(phen)Cl]ClO4, bmbp=2,6‐bis(6‐methylbenzimidazol‐2‐yl) pyridine, phen=phenanthroline) with a chloride ligand, and revealed that aquation of RuBmp effectively enhanced its hydrophilicity and cellular uptake, thus significantly increasing its anticancer efficacy. The aquation products (H‐RuBmp=[RuII(bmbp)(phen)Cl]ClO4, [RuII(bmbp)(phen)(H2O)]ClO4, bmbp) exhibited a much higher apoptosis‐inducing ability than the intact complex, with involvement of caspase activation, mitochondria dysfunction, and interaction with cell membrane death receptors. H‐RuBmp demonstrated a higher interaction potency with the cell membrane and induced higher levels of ROS overproduction in cancer cells to regulate the AKT, MAPK, and p53 signaling pathways. Taken together, this study could provide useful information for fine‐tuning the rational design of next‐generation metal medicines.
Keywords:apoptosis  aquation  drug design  ligand leaving  ruthenium complexes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号