首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental study of the flow regimes resulting from the impact of an intermittent gasoline spray
Authors:M?R?O?Pan?o  Email author" target="_blank">A?L?N?MoreiraEmail author
Institution:(1) Instituto Superior Técnico, Department of Mechanical Engineering, Av. Rovisco Pais, 1049-00 Lisbon, Portugal
Abstract:The present paper reports a complete set of measurements made with a two-component phase Doppler anemometer of the two-phase flow generated at the impact of a transient gasoline spray onto a flat surface. The spray is generated by a pintle injector and the fuel used was gasoline. The measurements of droplet size–velocity were processed to provide time fluxes of number, mass, normal momentum, and energy of the poly-dispersion of droplets ejected at impact, and analyzed based on predictive tools available in the literature. The results show that splash is the dominant mechanism by which secondary droplets are ejected from the surface, either in the stagnation region or in the core region of the spray. In the stagnation region, a large fraction of each incident droplet adheres to the surface and the axial incident momentum contributes with a larger parcel than tangential momentum. As a result, the normal velocity of ejected droplets is much smaller than that of the original incident droplets, while tangential velocity is enhanced. The region near the stagnation point is immediately flooded upon impact of the leading front of the spray, forming a liquid film that is forced to move radially outwards as droplets continue to impinge during the steady period. Spray/wall interaction in the core region thus occurs in the presence of a moving thin liquid film, which enhances transfer of tangential momentum. As a result, film spreading and dynamics as a result of impingement forces are crucial to accurate model spray/wall interaction. The outer region of the spray is dominated by the vortical structure induced by shear forces, which entrains small responsive secondary droplets to re-impinge. Furthermore, prediction of the outcome of spray impact requires a precise knowledge of the two-phase flow in the presence of the target.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号