首页 | 本学科首页   官方微博 | 高级检索  
     


On choosing a reference redox system for electrochemical measurements: a cautionary tale
Authors:Angel A. J. Torriero  Stephen W. Feldberg  Jie Zhang  Alexandr N. Simonov  Alan M. Bond
Affiliation:1. Institute for Frontier Materials, Deakin University, Burwood, Melbourne, VIC, 3125, Australia
2. Chemistry Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
3. School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia
Abstract:The potential of a quasi-reference electrode can be determined by introducing an internal reference redox system (IRRS) which comprises either the oxidizable or reducible form of a reversible (and, ideally, outer-sphere) redox couple and then observing the cyclic voltammetric responses. The objective is to choose the IRRS so that the cyclic voltammetric response for the simultaneously present electroactive analyte system (ANS) can be observed independently of the IRRS response. We identify three fundamental paradigms describing the relative positioning of the IRRS and ANS on the potential scale, the operative redox components for the IRRS and ANS, and the starting potential (E start), reversing potential (E rev), and ending potential (E end) for the cyclic voltammetric scan as follows: paradigm A, an optimal paradigm which can produce completely independent cyclic voltammetric responses for the IRRS or for ANS; paradigm B, a less-than-optimal paradigm which can produce an independent cyclic voltammetry (CV) response for the ANS or a mixed response for the IRRS with that response on top of the ANS response; paradigm C, a problematic paradigm that can produce an independent CV response for the IRRS or a mixed response for the ANS with that response on top of the IRRS response; and any mixed response produces a thermodynamically favored redox cross-reaction which couples the IRRS and ANS systems and which can complicate the analysis of the ANS and IRRS responses. The conclusion is that paradigm C is to be avoided.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号