Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film |
| |
Affiliation: | Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China |
| |
Abstract: | The broadband metamaterial perfect absorber has been extensively studied due to its excellent characteristics and promising application prospect. In this work a solar broadband metamaterial perfect absorber is proposed based on the structure of the germanium (Ge) cone array and the indium arsenide (InAs) dielectric film on the gold (Au) substrate. The results show that the absorption covers the whole ultraviolet-visible and near-infrared range. For the case of A > 99%, the absorption bandwidth reaches up to 1230 nm with a wavelength range varied from 200 nm to 1430 nm. The proposed absorber is able to absorb more than 98.7% of the solar energy in a solar spectrum from 200 nm to 3000 nm. The electromagnetic dipole resonance and the high-order modes of the Ge cone couple strongly to the incident optical field, which introduces a strong coupling with the solar radiation and produces an ultra-broadband absorption. The absorption spectrum can be feasibly manipulated via tuning the structural parameters, and the polarization insensitivity performance is particularly excellent. The proposed absorber can possess wide applications in active photoelectric effects, thermion modulators, and photoelectric detectors. |
| |
Keywords: | metamaterial electromagnetic resonance perfect absorber solar broadband absorption |
|
| 点击此处可从《中国物理 B》浏览原始摘要信息 |
|
点击此处可从《中国物理 B》下载免费的PDF全文 |
|