首页 | 本学科首页   官方微博 | 高级检索  
     


Griffith crack moving in a piezoelectric strip
Authors:X.-F. Li
Affiliation:(1) College of Mathematical and Physics, Hunan Normal University, Changsha, Hunan 410081, P. R. China e-mails: lixf@mail.hunnu.edu.cn, xfli@post.com, CN
Abstract:Summary  The dynamic problem of an impermeable crack of constant length 2a propagating along a piezoelectric ceramic strip is considered under the action of uniform anti-plane shear stress and uniform electric field. The integral transform technique is employed to reduce the mixed-boundary-value problem to a singular integral equation. For the case of a crack moving in the mid-plane, explicit analytic expressions for the electroelastic field and the field intensity factors are obtained, while for an eccentric crack moving along a piezoelectric strip, numerical results are determined via the Lobatto–Chebyshev collocation method for solving a resulting singular integral equation. The results reveal that the electric-displacement intensity factor is independent of the crack velocity, while other field intensity factors depend on the crack velocity when referred to the moving coordinate system. If the crack velocity vanishes, the present results reduce to those for a stationary crack in a piezoelectric strip. In contrast to the results for a stationary crack, applied stress gives rise to a singular electric field and applied electric field results in a singular stress for a moving crack in a piezoelectric strip. Received 14 August 2001; accepted for publication 24 September 2002 The author is indebted to the AAM Reviewers for their helpful suggestions for improving this paper. The work was supported by the National Natural Science Foundation of China under Grant 70272043.
Keywords:  Moving crack, Electroelastic analysis, Piezoelectric strip, Closed-form solution
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号