Determination of the rate constant for the NH2(X2B1) + NH2(X2B1) recombination reaction with collision partners He, Ne, Ar, and N2 at low pressures and 296 K. Part 1 |
| |
Authors: | Altinay Gokhan Macdonald R Glen |
| |
Affiliation: | Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4831, USA. |
| |
Abstract: | The recombination rate constant for the NH(2)(X(2)B(1)) + NH(2)(X(2)B(1)) → N(2)H(4)(X(1)A(1)) reaction in He, Ne, Ar, and N(2) was measured over the pressure range 1-20 Torr at a temperature of 296 K. The NH(2) radical was produced by 193 nm laser photolysis of NH(3) dilute in the third-body gas. The production of NH(2) and the loss of NH(3) were monitored by high-resolution continuous-wave absorption spectroscopy: NH(2) on the (1)2(21) ← (1)3(31) rotational transition of the (0,7,0)A(2)A(1) ← (0,0,0) X(2)B(1) vibronic band and NH(3) on either inversion doublet of the (q)Q(3)(3) rotational transition of the ν(1) fundamental. Both species were detected simultaneously following the photolysis laser pulse. The broader Doppler width of the NH(2) spectral transition allowed temporal concentration measurements to be extended up to 20 Torr before pressure broadening effects became significant. Fall-off behavior was identified and the bimolecular rate constants for each collision partner were fit to a simple Troe form defined by the parameters, k(0), k(inf), and F(cent). This work is the first part of a two part series in which part 2 will discuss the measurements with more efficient energy transfer collision partners CH(4), C(2)H(6), CO(2), CF(4), and SF(6). The pressure range was too limited to extract any new information on k(inf), and k(inf) was taken from the theoretical calculations of Klippenstein et al. (J. Phys. Chem A 2009, 113, 10241) as k(inf) = 7.9 × 10(-11) cm(3) molecule(-1) s(-1) at 296 K. The individual Troe parameters were: He, k(0) = 2.8 × 10(-29) and F(cent) = 0.47; Ne, k(0) = 2.7 × 10(-29) and F(cent) = 0.34; Ar, k(0) = 4.4 × 10(-29) and F(cent) = 0.41; N(2), k(0) = 5.7 × 10(-29) and F(cent) = 0.61, with units cm(6) molecule(-2) s(-1) for k(0). In the case of N(2) as the third body, it was possible to measure the recombination rate constant for the NH(2) + H reaction near 20 Torr total pressure. The pure three-body recombination rate constant was (2.3 ± 0.55) × 10(-30) cm(6) molecule(-2) s(-1), where the uncertainty is the total experimental uncertainty including systematic errors at the 2σ level of confidence. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|