首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Femtosecond laser-fabricated microstructures in bulk poly(methylmethacrylate) and poly(dimethylsiloxane) at 800 nm towards lab-on-a-chip applications
Authors:K L N Deepak  S Venugopal Rao and D Narayana Rao
Abstract:Laser direct writing technique is employed to fabricate microstructures, including gratings (buried and surface) and two-dimensional photonic crystal-like structures, in bulk poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) using ∼100 femtosecond (fs) pulses. The variation of structure size with different writing conditions (focussing, speed and energy) was investigated in detail. Diffraction efficiencies of the gratings were calculated and the changes in diffraction efficiency (DE) as a function of period, energy and scanning speed were evaluated. Highest diffraction efficiencies of 34% and 10%, for the first order, were obtained in PMMA and PDMS respectively. Heat treatment of these gratings demonstrated small improvement in the diffraction efficiency. Several applications resulting from these structures are discussed. Fs modification in PMMA and PDMS demonstrated emission when excited at a wavelength of 514 nm. We attempted to prepare buried waveguides in PMMA with higher refractive index at the core. We have successfully fabricated branched and curved structures in PMMA and PDMS finding impending applications in microfluidics.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号