Abstract: | Maltitol is crystallized with seeds by cooling mode in industry, often with large amount of fine crystals and wide crystal size distribution. To eliminate the fine nucleation, it's necessary to understand the nucleation kinetics. In this work, the solubility of maltitol in water was measured by the gravimetric method, the nucleation kinetics of maltitol in batch cooling crystallization was investigated using focus beam reflectance measurement (FBRM), and a novel method was proposed to determine the induction time from the trend of the crystal median chord given by FBRM. Based on the relationship between the induction time and the supersaturation, the nucleation mechanism was obtained, including homogenous nucleation at high supersaturation and heterogenous nucleation at low supersaturation. Additionally, combining the classical nucleation theory (CNT) and Arrhenius’ principle, the crystal‐solution interfacial energy and the energy barrier of homogenous nucleation were calculated. From the scanning electron microscope (SEM) images, the growth mechanism of maltitol was identified as surface nucleation growth and the surface entropy factor calculated from the kinetic analyses of tind data corroborated this growth mechanism. |