Abstract: | In this paper the synthesis of SnO2 nanoparticles with average particle size up to about 70 nm using SnCl22H2O and NH4OH in 1‐botanol solution by the precipitation method is reported and the inhibition of sodium dodecyl sulphate (SDS) on the SnO2 particle growth is investigated by soaking SnO2precursor in the SDS solution for 24 h. The as‐prepared SnO2and SDS modified‐SnO2 powders, then, were calcined at different temperatures and the X‐ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FT‐IR) were used to characterize the output samples. The XRD results reveal that the structure of tin‐dioxide is tetragonal rutile and the as‐prepared SnO2 nanoparticles grow with increasing the annealing temperature, while the SDS treatment prevents the particle growth under the same condition. Furthermore, the FT‐IR results indicate the formation of tin‐hydroxyl group which are then converted into tin‐dioxide with heat treatment. Further characterization of the samples by the transmission electron microscopy (TEM) and the photoluminescence (PL) spectroscopy was carried out. The room temperature PL spectra of SnO2exhibits broad and strong peak attributed to the surface defects such as oxygen vacancies and intensity of which decreases with the increase in particle size. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |