首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress
Authors:Wu Tianming  Farny Caleb H  Roy Ronald A  Holt R G
Institution:Department of Radiation and Cellular Oncology, University of Chicago Medical Center, 5758 S. Maryland Ave, Chicago, Illinois 60616, USA.
Abstract:In an earlier work by Farny et al. ARLO 6, 138-143 (2005).] it was demonstrated that the acoustic cavitation threshold in a tissue mimicking gel phantom can be lowered from 4.5 to ~1 MPa by "seeding" the optically transparent phantom with light absorptive gold nanoparticles and irradiating these absorbers with nanosecond pulses of laser light at intensities less than 10 mJ/cm(2). As a follow-up study, a three-stage numerical model was developed to account for prenucleation heating, the nucleation and formation of the vapor cavity, and the resulting vapor bubble dynamics. Through examination of the radius-time evolution of the cavity, the combined thresholds for laser radiant exposure and acoustic peak pressure required to induce inertial cavitation are deduced. It is found that the threshold pressure decreases when laser exposure increases; but the rate depends on exposure levels and the size of the particle. Investigations of the roles of particle size and laser pulse length are performed and optimum choices for these parameters determined in order to obtain inertial cavitation at the lowest possible acoustic pressure and laser intensity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号