首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Focusing of longitudinal ultrasonic waves in air with an aperiodic flat lens
Authors:Welter John T  Sathish Shamachary  Christensen Daniel E  Brodrick Philip G  Heebl Jason D  Cherry Matthew R
Institution:Air Force Research Laboratory, Nondestructive Evaluation Branch (AFRL/RXLP), 2230 Tenth Street, Wright-Patterson AFB, Ohio 45433, USA. John.Welter@wpafb.af.mil
Abstract:Modeling and experimental results of an ultrasonic aperiodic flat lens for use in air are presented. Predictive modeling of the lens is performed using a hybrid genetic-greedy algorithm constrained to a linear structure. The optimized design parameters are used to fabricate a lens. A method combining a fiber-disk arrangement and scanning laser vibrometer measurements is developed to characterize the acoustic field distribution generated by the lens. The focal spot size is determined to be 0.88 of the incident wavelength of 80-90 kHz at a distance of 2.5 mm from the lens. Theoretically computed field distributions, optimized frequency of operation, and spatial resolution focal length are compared with experimental measurements. The differences between experimental measurements and the theoretical computations are analyzed. The theoretical calculation of the focal spot diameter is 1.7 mm which is 48% of the experimental measurement at a frequency of 80-90 kHz. This work illustrates the capabilities of a hybrid algorithm approach to design of flat acoustic lenses to operate in air with a resolution of greater than the incident wavelength and the challenges of characterizing acoustic field distribution in air.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号