首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temperature-induced structural changes in glassy, supercooled, and molten silica from 77 to 2150 K
Authors:Kalampounias A G  Yannopoulos S N  Papatheodorou G N
Institution:Department of Chemical Engineering, University of Patras, GR-26 504 Patras, Greece.
Abstract:In situ polarized and depolarized Raman spectra of glassy, supercooled, and molten SiO2 have been measured over the broad temperature range 77-2150 K in an effort to examine possible structural changes caused by temperature variation. A new experimental setup using a CO2 laser for heating the sample has been designed allowing measurement with controllable blackbody radiation background at temperatures up to 2200 K. Careful and systematic relative intensity measurements and the use of the isotropic and anisotropic Raman representation of the spectra revealed hidden bands in the bending mode region and resolved bands in the stretching region of the spectra. Overall the spectra behavior shows similarities with the spectra of the recently studied tetrahedral glasses/melts of ZnCl2 and ZnBr2. Increasing temperature causes subtle changes of the relative intensities within the silicon-oxygen stretching region at approximately 750-850 cm(-1) and gives rise to a new band at approximately 930 cm(-1). The spectral behavior is interpreted to indicate that the "SiO42" tetrahedra are bound to each other to form the network by apex-bridging and partly by edge-bridging oxygens. The network structure of the glass/melt is formed by mixing a variety of tetrahedra participating in "open" (cristobalitelike), "cluster" (supertetrahedra), and "chain" edge-bridged substructures bound to each other by bridging oxygens. A weak in intensity but strongly polarized composite band is resolved at approximately 1400 cm(-1) and is assigned to SiDouble Bond]O terminal bond frequency. Temperature rise increases the concentration of the terminal bonds by breaking up the network. These structural changes are reminiscent of the polyamorphic transformations occurring in silica as has recently been predicted by computer simulations. At low frequencies the Raman spectra reveal the presence of the Boson peak at approximately 60 cm(-1) which is well resolved even above melting temperature up to 2150 K.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号