首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes
Authors:Ming-hsun Wu  MP Burke  SF Son  RA Yetter
Institution:aDepartment of Mechanical and Nuclear Engineering, The Pennsylvania State University, 111 Research Building East, Bigler Road, University Park, PA 16802, USA;bLos Alamos National Laboratory, Los Alamos, NM 87545, USA
Abstract:Flame propagation in capillary tubes with smooth circular cross-sections and diameters of 0.5, 1.0, and 2.0 mm are investigated using high-speed photography. Flames were found to propagate and accelerate to detonation speed in stoichiometric ethylene and oxygen mixtures initially at room temperature in all three tube diameters. Ignition occurs at the midpoint along the length of the tube. We observe for the first time transition to detonation in micro-tubes. Detonation was observed with both spark and hot-wire ignition. Tubes with larger diameters take longer to transition to detonation. In fact, transition distance scales with the diameter in our 1.0 and 2.0 mm cases with spark ignition. Flame structures are observed for various stages of the process. Three types of flame propagation modes were observed in the 0.5 mm tube with spark ignition: (a) acceleration to Chapman–Jouguet (CJ) detonation speed followed by constant CJ wave propagation, (b) acceleration to CJ speed, followed by the detonation wave failure, and (c) flame acceleration to a constant speed below the CJ speed of approximately 1600 m/s. The current detonation mechanism observed in capillary tubes is applicable to predetonators for pulsed detonation, micro propulsion devices, safety issues, and addresses fundamental issues raised by recent theoretical and numerical analyses.
Keywords:Gas detonation  DDT  Meso/micro-scale combustion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号