首页 | 本学科首页   官方微博 | 高级检索  
     检索      

脉冲激光晶化超薄非晶硅膜的分子动力学研究
引用本文:陈谷然,宋超,徐骏,王旦清,徐岭,马忠元,李伟,黄信凡,陈坤基.脉冲激光晶化超薄非晶硅膜的分子动力学研究[J].物理学报,2010,59(8):5681-5686.
作者姓名:陈谷然  宋超  徐骏  王旦清  徐岭  马忠元  李伟  黄信凡  陈坤基
作者单位:南京大学物理系,固体微结构物理国家重点实验室,江苏省光电信息功能材料重点实验室,南京 210093
基金项目:国家重点基础研究发展计划(批准号:2007CB613401,2007CB935401),国家自然科学基金(批准号:10874070)和江苏省自然科学基金(批准号:BK2008253)资助的课题.
摘    要:利用准分子脉冲激光晶化非晶硅薄膜是制备高密度尺寸可控的硅基纳米结构的有效方法之一.本文将脉冲激光对非晶硅超薄膜的影响处理为热传导问题,采用了基于Tersoff势函数的分子动力学方法模拟了在非晶氮化硅衬底上2.7 nm超薄非晶硅膜的脉冲激光晶化过程.研究了不同激光能量对非晶硅薄膜晶化形成纳米硅的影响,发现在合适的激光能量窗口下,可以获得高密度尺寸可控的纳米硅薄膜,进而模拟了在此能量作用下非晶硅膜中成核与生长的机理与微观过程,并对晶化所获得的纳米硅薄膜的微结构进行了分析. 关键词: 非晶硅 分子动力学 脉冲激光晶化

关 键 词:非晶硅  分子动力学  脉冲激光晶化
收稿时间:2009-11-12

Molecular dynamics simulations of pulsed laser crystallization of amorphous silicon ultrathin films
Chen Gu-Ran,Song Chao,Xu Jun,Wang Dan-Qing,Xu Ling,Ma Zhong-Yuan,Li Wei,Huang Xin-Fan,Chen Kun-Ji.Molecular dynamics simulations of pulsed laser crystallization of amorphous silicon ultrathin films[J].Acta Physica Sinica,2010,59(8):5681-5686.
Authors:Chen Gu-Ran  Song Chao  Xu Jun  Wang Dan-Qing  Xu Ling  Ma Zhong-Yuan  Li Wei  Huang Xin-Fan  Chen Kun-Ji
Institution:National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic MaterialsSciences and Technology, Department of Physics, Nanjing University, Nanjing 210093, China;National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic MaterialsSciences and Technology, Department of Physics, Nanjing University, Nanjing 210093, China;National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic MaterialsSciences and Technology, Department of Physics, Nanjing University, Nanjing 210093, China;National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic MaterialsSciences and Technology, Department of Physics, Nanjing University, Nanjing 210093, China;National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic MaterialsSciences and Technology, Department of Physics, Nanjing University, Nanjing 210093, China;National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic MaterialsSciences and Technology, Department of Physics, Nanjing University, Nanjing 210093, China;National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic MaterialsSciences and Technology, Department of Physics, Nanjing University, Nanjing 210093, China;National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic MaterialsSciences and Technology, Department of Physics, Nanjing University, Nanjing 210093, China;National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic MaterialsSciences and Technology, Department of Physics, Nanjing University, Nanjing 210093, China
Abstract:Laser crystallization of amorphous Si thin films is one of reliable method of preparing nanocrystalline silicon with high density and controllable size. In the present work, molecular dynamics simulation based on Tersoff potential was used to study the laser crystallization process of ultrathin amorphous silicon film (2.7 nm) on amorphous silicon nitride substrate. The influence of laser fluences on the crystallization and formation of nanocrystalline Si was investigated. It was found that there exists a laser fluence window in which nucleation and growth of nanocrystalline Si can be realized, which is in agreement with our previous experimental observations. The nucleation and growth processes in microscopic scale were simulated and the size of formed nanocrystalline Si was limited in both vertical and lateral directions by the film thickness and the formation of grain boundaries.
Keywords:amorphous silicon  molecular dynamics  pulsed laser crystallization
本文献已被 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号