首页 | 本学科首页   官方微博 | 高级检索  
     

基于中心点的遥感图像多方向舰船目标检测
引用本文:张筱晗,姚力波,吕亚飞,韩鹏,李健伟. 基于中心点的遥感图像多方向舰船目标检测[J]. 光子学报, 2020, 49(4): 205-213. DOI: 10.3788/gzxb20204904.0410005
作者姓名:张筱晗  姚力波  吕亚飞  韩鹏  李健伟
作者单位:海军航空大学信息融合研究所,山东烟台264000,海军航空大学信息融合研究所,山东烟台264000,海军航空大学信息融合研究所,山东烟台264000,海军91039部队,北京102488,海军92877部队,浙江舟山316000
摘    要:针对目前基于深度学习的舰船目标斜框检测方法存在计算量大、效率低的问题,提出一种基于目标中心点的单阶段检测模型.由于舰船中心点不受舰船分布方向影响,模型主要思想是以目标中心点检测为基础,回归中心点处目标斜框的尺度和方向.首先设计特征提取网络,将卷积神经网络细节信息丰富的底层特征与语义信息丰富的高层特征融合起来形成特征图;然后将特征图输入到三个检测分支,分别预测目标中心点、中心点偏移值以及斜框的尺度与方向;设计组合损失函数对网络进行训练,并改进非极大值抑制算法以适应目标斜框检测的需要.在公开的SAR图像舰船目标检测数据集与光学遥感图像上进行了实验,实验结果表明,测试集平均准确率达0.906,检测精度与速度均优于其它检测模型,充分验证了所提算法的有效性.

关 键 词:目标检测  图像分析  深度学习  遥感图像  舰船目标  特征提取

Center Based Model for Arbitrary-oriented Ship Detection in Remote Sensing Images
ZHANG Xiao-han,YAO Li-bo,L Ya-fei,HAN Peng,LI Jian-wei. Center Based Model for Arbitrary-oriented Ship Detection in Remote Sensing Images[J]. Acta Photonica Sinica, 2020, 49(4): 205-213. DOI: 10.3788/gzxb20204904.0410005
Authors:ZHANG Xiao-han  YAO Li-bo  L Ya-fei  HAN Peng  LI Jian-wei
Affiliation:ZHANG Xiao-han,YAO Li-bo,L(U) Ya-fei,HAN Peng,LI Jian-wei
Abstract:The recent proposed deep learning-based arbitrary-oriented objects detection algorithms increase extra computation burden and could not work efficiently.A one-stage model based on object centers detection is proposed for arbitrary-oriented ship detection.As the centers of objects are free from the influence their distribution directions,the key of the model is to regress the parameters of object′s oriented bounding box on the basis of center detection.Firstly,a feature extracting network is designed to achieve feature map and a new feature fusion method is proposed which aggregates the low-level features rich in detailing information and high-level features rich in semantic information together.Then the feature map is entered to three detection branches,which predict of centers,offsets of centers,and size and direction of the oriented bounding boxes respectively.A combined loss function is proposed for the training of the network,and a modified non-maximum suppression algorithm is proposed for removing invalid oriented bounding boxes.The proposed model achieves state-of-art performance in public SAR ship detection dataset with mean average precision as 0.906,outstanding than other methods both in speed and precision.
Keywords:Object detection  Image analysis  Deep learning  Remote sensing images  Ship  Feature extraction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号