首页 | 本学科首页   官方微博 | 高级检索  
     


Born-Oppenheimer symmetry breaking in the C state of NO2: importance of static and dynamic correlation effects
Authors:Bera Partha P  Yamaguchi Yukio  Schaefer Henry F  Crawford T Daniel
Affiliation:Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602-2525, USA.
Abstract:A systematic theoretical treatment is performed with highly correlated ab initio theoretical methods to establish the structural nature of the C state of NO2. We predict the C state to have an asymmetric structure (point group C(s)). Spin-restricted and spin-unrestricted configuration interaction (CISD), coupled cluster [CCSD and CCSD(T)], multireference complete active space self-consistent field (CASSCF), and internally contracted multireference configuration interaction (ICMRCI) methods were used in conjunction with very large correlation-consistent polarized valence zeta cc-pVXZ and aug-cc-pVXZ [X = T, Q, 5] basis sets. The asymmetric C 2A' state is predicted to lie T(e) = 47.5 kcal/mol (2.06 eV, 16,600 cm(-1)) above the X 2A1 state at the aug-cc-pV5Z/UCCSD(T) level of theory, with T0 = 46.0 kcal/mol (2.00 eV, 16,100 cm(-1)), in good agreement with the experimental values of 46.77 kcal/mol (2.028 eV, 16,360 cm(-1)) by Weaver and 46.42 kcal/mol (2.013 eV, 16,234 cm(-1)) by Aoki. The symmetric structure (in C(2v) symmetry) with re(NO) = 1.274 A and theta(e) (ONO) = 109.9 degrees is a transition state between the two equivalent asymmetric (in C(s) symmetry) structures and is located only 1.53 kcal/mol (0.066 eV, 540 cm(-1)) above the asymmetric structure. The asymmetric structure is predicted to have structural parameters r(e)(NOl) = 1.489 A, r(e)(NOs) = 1.169 A, and theta(e)(ONO) = 109.7 degrees with the same method, aug-cc-pV5Z/UCCSD(T). The averaged NO bond distance is 1.329 A, and the difference between the two NO bond distances is 0.320 A. The three harmonic vibrational frequencies for the C 2A' state are 1656 (in-phase stretch), 759 (bend), and 378 (out- of-phase stretch) cm(-1). While these theoretical results further corroborate the previous predictions concerning the asymmetric nature of the C state, there remains discrepancy between the theoretical and experimental symmetric stretching mode omega1 (1656 and 923 cm(-1), respectively). It is possible, however, that this disagreement could be resolved by a reassignment of the corresponding lines in the experimental spectrum, though additional vibronic simulations of the spectrum are required to confirm this proposition.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号