首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solid-state structural characterization of a rigid framework of lacunary heteropolyniobates
Authors:Nyman May  Celestian Aaron J  Parise John B  Holland Gregory P  Alam Todd M
Institution:Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, USA. mdnyman@sandia.gov
Abstract:In our ongoing investigations of heteropolyniobate chemistry, a phase featuring decorated, A-type trivacant alpha-Keggin ions linked by their charge-balancing sodium cations has been isolated and structurally characterized. This is the first heteropolyniobate reported that has a true lacunary structure type. Na15(PO2)3PNb9O34] x 22 H2O (1) triclinic space group P1 (No. 2); a = 12.242 (2) A, b = 12.291 (3) A, c = 22.056 (4) A; alpha = 93.12 (3) degrees, beta = 99.78 (3) degrees, gamma = 119.84 (3) degrees; Z = 4, V = 2799.2 (10) A3] is composed of bilayers of the heteropolyanions alternating with layers of hydrated Na+ cations. Sodium cations also bridge the clusters within their layers through Na-O(t)-Nb, Na-O(b)-Nb2, and Na-O(t)-P bonds (t = terminal and b = bridging). This phase is poorly soluble in water, suggesting that it is more characteristic of a framework of linked heteropolyanions rather than a water-soluble heteropolyanion salt. Two-dimensional solid-state 23Na multiple-quantum magic angle spinning (MAS) NMR of 1 reveals five distinctive chemical and structural environments for sodium, which agrees with the crystallographic data. The 23Na and 1H MAS NMR studies further illustrate the rigid and immobile nature of this framework of cations and anions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号