首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Surface and subsurface oxidation of Mo2C/Mo(100): low-energy ion-scattering, auger electron, angle-resolved X-ray photoelectron, and mass spectroscopy studies
Authors:Ovári László  Kiss János  Farkas Arnold P  Solymosi Frigyes
Institution:Reaction Kinetics Research Group of the Hungarian Academy of Sciences, University of Szeged, P.O. Box 168, H-6701 Szeged, Hungary.
Abstract:The interaction of oxygen with a carburized Mo(100) surface was investigated at different temperatures (300-1000 K). The different information depths of low-energy ion-scattering (LEIS) spectroscopy, with topmost layer sensitivity, Auger electron spectroscopy (AES), and angle-resolved X-ray photoelectron spectroscopy (ARXPS) allowed us to discriminate between reactions on the topmost layer and subsurface transformations. According to ARXPS measurements, a carbide overlayer was prepared by the high-temperature decomposition of C(2)H(4) on Mo(100), and the carbon distribution proved to be homogeneous with a Mo(2)C stoichiometry down to the information depth of XPS. O(2) adsorbs dissociatively on the carbide layer at room temperature. One part of the chemisorbed oxygen is bound to both C and Mo sites, indicated by LEIS. Another fraction of oxygen atoms probably resides in the hollow sites not occupied by C. The removal of C from the outermost layer by O(2), in the form of CO, detected by mass spectroscopy (MS), was observed at 500-600 K. The carbon-depleted first layer is able to adsorb more oxygen compared to the Mo(2)C/Mo(100) surface. Applying higher doses of O(2) at 800 K results in the inward diffusion of O and the partial oxidation of Mo atoms. This process, however, is not accompanied by the removal of C from subsurface sites. The depletion of C from the bulk starts only at 900 K (as shown by MS, AES, and XPS), very probably by the diffusion of C to the surface followed by its reaction with oxygen. At T(ads) = 1000 K, the carbon content of the sample, down to the information depth of XPS, decreased further, accompanied by the attenuation of the C concentration gradient and a substantially decreased amount of oxygen.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号