首页 | 本学科首页   官方微博 | 高级检索  
     


Nucleation free energy of pore formation in an amphiphilic bilayer studied by molecular dynamics simulations
Authors:Tolpekina T V  den Otter W K  Briels W J
Affiliation:Computational Dispersion Rheology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Abstract:The formation of a pore in a membrane requires a considerable rearrangement of the amphiphilic molecules about to form the bilayer edge surrounding the pore, and hence is accompanied by a steep increase of the free energy. Recent rupture and conductance experiments suggest that this reshuffling process is also responsible for a small energy barrier that stabilizes "prepores" with diameters of less than 1 nm, rendering both the opening and closing of pores an activated process. We use the potential of mean constraint force method to study this free energy profile, as a function of pore radius, in a coarse grained bilayer model. The calculations show that the free energy rises by (15-20) kT during pore opening, making it an extremely rare nucleation event. Although we do not observe a barrier to pore closure, the results do make the existence of such a barrier plausible. For larger pores we find a smooth transition to Litster's model, from which a line tension coefficient of about 3.7 x 10(-11) J m(-1) is deduced.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号