首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluorescence quenching of vaporous polycyclic aromatic hydrocarbons by oxygen
Authors:G A Zalesskaya  F Piuzzi  E G Sambor
Institution:(1) Institute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, Minsk, 220072, Belarus;(2) Laboratoire Francis Perrin, Centre de Seclay, 91191 Gif-sur-Yvette Cedex, France
Abstract:The fluorescence quenching by oxygen of vapors of nine polycyclic aromatic hydrocarbons with strongly different oxidation potentials 0.44 eV < E ox < 1.61 eV (anthracene, 9-methylanthracene, 2-aminoanthracene, 9,10-dibromanthracene, pyrene, chrysene, phenanthrene, fluoranthene, and carbazole) is studied. From the dependences of the fluorescence decay rates and intensities on the oxygen pressure P O2, the quenching rate constants k S O2 for the excited singlet states S 1 and the fraction f S O2 of the S 1 states quenched by oxygen are estimated. At P O2 = 5 Torr, the k S O2 constants vary from 1.2 × 107 to 3.0 × 105 s?1 Torr?1, while the fraction of the quenched excited singlet states changes from 0.1 (fluoranthene) to 0.7 (chrysene) and 0.8 (pyrene). The dependences of k S O2 on the photophysical and electron-donor characteristics of the fluorescing compounds are analyzed. It is shown that, in the gas phase of anthracene and its derivatives, the magnitudes of k S O2 are limited by the rate constants of gas-kinetic collisions k gk and do not depend on the electron-donor characteristics of fluorophores, while the fraction of quenched states f S O2 changes with the oxidation potential. For compounds with k S O2 < k gk, both the rate constants k S O2 and the fraction of quenched states f S O2 depend on the E ox of sensitizers, which demonstrates an important role played by the charge-transfer interactions in quenching of the S 1 states. The dependence of the rate constants k S O2 on the free energy of electron transfer ΔG et is considered.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号