首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of light polarization on holographic recording in glassy azocompounds and chalcogenides
Authors:Andris Ozols  Valdis Kokars  Peteris Augustovs  Ilze Uiska  Kaspars Traskovskis  Dmitry Saharov
Institution:(1) School of Electrical, Electronic and Mechanical Engineering, UCD Communications and Optoelectronic Research Centre, SFI Strategic Research Cluster in Solar Energy Conversion, College of Engineering, Mathematical and Physical Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
Abstract:Light polarization effects on a holographic grating recording in a glassy chalcogenide a-As40S15Se45 film has been experimentally studied and compared with previously studied glassy molecular azobenzene film 8a at 633, using ss,pp, CE-1 and CE-2 circular-elliptic recording-beam polarizations (differing by light electric field rotation directions). The azocompound exhibited much higher self-diffraction efficiency (SDE) and diffraction efficiency whereas chalcogenide was more sensitive. Their recording efficiency polarization dependences also were different. SDE up to 45% was achieved in 8a with pp and up to 2.6% in a-As40S15Se45 with CE-2 polarized recording beams. The polarization changes in the diffraction process were studied as well in these and other materials (11, 16, 19 and a-As2S3 film, LiTaO3:Fe crystal). It was found that light polarization changes in the process of diffraction from gratings recorded vectorially by sp polarizations depended on chemical composition, wavelength, and exposure time. Vector gratings with SDE up to 25% were recorded in 8a, rotating a linear polarization by 90°. No light polarization changes were found in azobenzene 19 and chalcogenide films and in LiTaO3:Fe crystal, thus showing a vector recording of scalar holograms. The recording mechanisms in azocompounds and chalcogenides are discussed and compared.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号