首页 | 本学科首页   官方微博 | 高级检索  
     


Discrete kernels,loss functions and parametric models in discrete discrimination: A comparative study
Authors:Gerhard Tutz  Herbert Groß
Affiliation:(1) Fachbereich 13-Informatik, Institut für Quantitative Methoden, Technische Universität Berlin, Franklinstraße 28/29, 10587 Berlin, Germany;(2) BMW AG, Petuelring 130, 8000 München, Germany
Abstract:Two kernel-based approaches to discriminant analysis are considered: the traditional one where kernels are used to estimate the distribution of the predictor variables given the group and a direct kernel method where kernels are used to estimate the a posteriori probabilities directly. For both approaches cross-validatory choice of smoothing parameters is based on various loss functions which are directly connected to the separation of groups. Comparison with parametric models shows the improvement gained by the more flexible kernel approaches.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号