首页 | 本学科首页   官方微博 | 高级检索  
     


Temporal evolution and instability in a viscoelastic dielectric elastomer
Affiliation:1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States;2. The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
Abstract:Dielectric elastomer transducers are being developed for applications in stretchable electronics, tunable optics, biomedical devices, and soft machines. These transducers exhibit highly nonlinear electromechanical behavior: a dielectric membrane under voltage can form wrinkles, undergo snap-through instability, and suffer electrical breakdown. We investigate temporal evolution and instability by conducting a large set of experiments under various prestretches and loading rates, and by developing a model that allows viscoelastic instability. We use the model to classify types of instability, and map the experimental observations according to prestretches and loading rates. The model describes the entire set of experimental observations. A new type of instability is discovered, which we call wrinkle-to-wrinkle transition. A flat membrane at a critical voltage forms wrinkles and then, at a second critical voltage, snaps into another state of winkles of a shorter wavelength. This study demonstrates that viscoelasticity is essential to the understanding of temporal evolution and instability of dielectric elastomers.
Keywords:Dielectric elastomer  Viscoelasticity  Snap-through instability  Phase transition  Wrinkling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号