首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Defect redistribution within a continuum grain boundary plasticity model
Institution:1. School of Metallurgy and Materials, The University of Birmingham, Birmingham, B15 2TT, UK;2. Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
Abstract:The mechanical response of polycrystalline metals is significantly affected by the behaviour of grain boundaries, in particular when these interfaces constitute a relatively large fraction of the material volume. One of the current challenges in the modelling of grain boundaries at a continuum (polycrystalline) scale is the incorporation of the many different interaction mechanisms between dislocations and grain boundaries, as identified from fine-scale experiments and simulations. In this paper, the objective is to develop a model that accounts for the redistribution of the defects along the grain boundary in the context of gradient crystal plasticity. The proposed model incorporates the nonlocal relaxation of the grain boundary net defect density. A numerical study on a bicrystal specimen in simple shear is carried out, showing that the spreading of the defect content has a clear influence on the macroscopic response, as well as on the microscopic fields. This work provides a basis that enables a more thorough analysis of the plasticity of polycrystalline metals at the continuum level, where the plasticity at grain boundaries matters.
Keywords:Defect redistribution  Grain boundary  Crystal plasticity  Interface model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号