首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis of high‐order multiblock core cross‐linked star polymers
Authors:Thomas G McKenzie  Jing M Ren  Dave E Dunstan  Edgar H H Wong  Greg G Qiao
Institution:Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, Australia
Abstract:Core cross‐linked star (CCS) polymers with radiating arms composed of high‐order multiblock copolymers have been synthesized in a one‐pot system via iterative copper‐mediated radical polymerization. The employed “arm‐first” technique ensures the multiblock sequence of the macroinitiator is carried through to the star structure with no arm defects. The versatility of this approach is demonstrated by the synthesis of three distinct star polymers with differing arm compositions, two with an alternating ABABAB block sequence and one with six different block units (i.e. ABCDEF). Owing to the star architecture, CCS polymers in which the arm composition consists of alternating hydrophilic–hydrophobic (ABABAB) segments undergo supramolecular self‐assembly in selective solvents, whereas linear polymers with the same block sequence did not yield self‐assembled structures, as evidenced by DLS analysis. The combination of microstructural and topological control in CCS polymers offers exciting possibilities for the development of tailor‐made nanoparticles with spatially defined regions of functionality. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 135–143
Keywords:block copolymers  controlled radical polymerization  sequence‐control  star polymers  self‐assembly
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号