首页 | 本学科首页   官方微博 | 高级检索  
     

运用R矩阵方法研究低能电子与NO_2分子的散射
引用本文:朱冰,冯灏. 运用R矩阵方法研究低能电子与NO_2分子的散射[J]. 物理学报, 2017, 66(24): 243401-243401. DOI: 10.7498/aps.66.243401
作者姓名:朱冰  冯灏
作者单位:西华大学理学院, 成都 610039
基金项目:四川省科技厅青年基金(批准号:2015JQ0042)和国家自然科学基金(批准号:11174236)资助的课题.
摘    要:基于静电-交换和密耦合两种模型,采用R矩阵方法,研究了低能电子与二氧化氮自由基分子的积分散射截面和动量迁移散射截面,包括弹性散射和从电子基态到电子激发态的非弹性散射.采用aug-cc-pVTZ基组进行靶分子结构优化和散射研究.在密耦合模型中,包含6个电子的最低三个占据轨道1b_2,1a_1,2a_1被冻结,其余17个电子自由运动在活化空间中,并给活化空间增加了2b_1和7a_1两个虚轨道.包含了所有垂直激发能小于20 eV的靶分子电子组态,得到了收敛的散射截面,并与最新理论和实验值进行了比较.当入射能量小于4 eV时,本文结果与实验值符合得更好,校正了以往部分理论结果在极低能量处过高的现象,表明关联效应对于极低能量散射是非常重要的.

关 键 词:二氧化氮  R矩阵  电子散射  密耦合
收稿时间:2017-05-21

Electron scattering studies of NO2 radical using R-matrix method
Zhu Bing,Feng Hao. Electron scattering studies of NO2 radical using R-matrix method[J]. Acta Physica Sinica, 2017, 66(24): 243401-243401. DOI: 10.7498/aps.66.243401
Authors:Zhu Bing  Feng Hao
Affiliation:School of Science, Xihua University, Chengdu 610039, China
Abstract:Nitrogen dioxide molecule plays an important role in modeling atmospheric process. It is a toxic gas and considered as an atmospheric pollutant due to its involvement in reactions that produce ground-level ozone. The electron scattering of NO2 molecule has been extensively studied, specifically at intermediate and high energies. The discrepancies between previous theoretical studies and experimental data at low impact energies (below 4 eV) suggest that the in-depth research should be carried out. The target optimized equilibrium geometry is computed at the highly accurate coupled cluster singles, doubles and perturbative triples[CCSD(T)] level in this study. The ab initio R-matrix method is employed to study the integral and momentum transfer cross sections of low-energy electron scattering from NO2 radical up to 10 eV. Two models including static-exchange and close-coupling approximation are used to reveal the dynamic interaction. The electronic excitation cross sections are computed from ground state to seven electronically allowed excited states. All target states whose vertical excitation energies are below 20 eV are included in the close-coupling expansions of the scattering system. In our CC model, six electrons are in the core orbitals 1a1, 2a1 and 1b2, and the remaining 17 electrons are free to occupy the 4a1, 5a1, 6a1, 7a1, 1b1, 2b1, 3b2, 4b2, and 1a2 orbitals. The aug-cc-pVTZ dunning basis sets are used to optimize the target structure and electron scattering. A Born closure procedure is used to account for the contribution of partial waves higher than l=4 to obtain cross sections. Two shape resonances found at 0.76 eV and 1.82 eV in this study are lower than previous theoretical calculations, but the comparisons with other theoretical calculations and experimental data show that the present R-matrix study not only agrees well with the experiments but also corrects the overestimations of total cross sections of some other theoretical data in the very low energy regions. To study the influence of electron correlations, 21, 82 and 107 target electronic configurations are used in the close coupling model calculations, respectively. The comparisons of integrated cross sections indicate that it is very important to include more target electronic configurations to obtain the converged scattering cross sections, which reveals the importance of electron correlations.
Keywords:nitrogen dioxide  R-matrix method  electron scattering  close-coupling
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号