首页 | 本学科首页   官方微博 | 高级检索  
     

两腔级联纠缠增强的理论分析
引用本文:周瑶瑶,田剑锋,闫智辉,贾晓军. 两腔级联纠缠增强的理论分析[J]. 物理学报, 2019, 68(6): 64205-064205. DOI: 10.7498/aps.68.20182079
作者姓名:周瑶瑶  田剑锋  闫智辉  贾晓军
作者单位:1. 太原师范学院物理系, 晋中 030619;2. 山西大学光电研究所, 量子光学与光量子器件国家重点实验室, 太原 030006;3. 山西大学, 极端光学协同创新中心, 太原 030006
基金项目:国家重点研发计划(批准号:2016YFA0301402)、国家自然科学基金(批准号:11804246,61775127,11474190,11654002)、山西青年三晋学者项目、山西省回国留学人员科研资助项目、山西省“1331工程”重点学科建设计划和山西省高等学校创新人才支持计划.
摘    要:高纠缠度的纠缠源是实现高保真度量子信息传输与处理的保障,因为受到光学元器件自身性能不完美的限制,通过有效的操控手段来提高光场的纠缠度是十分必要的.连续变量Einstein-Podolsky-Rosen纠缠态光场可以利用工作在阈值以下的非简并光学参量放大器来获得.将两个非简并光学参量放大器级联,可以利用第二个光学腔来操控第一个光学腔输出的纠缠态光场,在一定条件下实现光场的纠缠增强.本文通过理论分析设计出两种光学腔级联的实验系统,其中,纠缠产生装置采用具有三共振结构的半整块驻波腔,输出到目前为止世界上单腔获得两组份纠缠态光场纠缠度的最高值,操控光学腔采用驻波腔或四镜环形腔的结构.详细对比分析了不同结构的操控腔对纠缠增强效果的影响,得出利用不同腔形作为操控腔的最佳实验方案.同时分析了级联腔输出光场的纠缠度随不同物理参量的变化关系,得出进一步优化的最佳实验系统参量,为实验获得更高纠缠度的纠缠态光场提供了依据.

关 键 词:两组份纠缠态光场  操控光学腔  纠缠增强
收稿时间:2018-11-22

Theoretical analysis of entanglement enhancement with two cascaded optical cavities
Zhou Yao-Yao,Tian Jian-Feng,Yan Zhi-Hui,Jia Xiao-Jun. Theoretical analysis of entanglement enhancement with two cascaded optical cavities[J]. Acta Physica Sinica, 2019, 68(6): 64205-064205. DOI: 10.7498/aps.68.20182079
Authors:Zhou Yao-Yao  Tian Jian-Feng  Yan Zhi-Hui  Jia Xiao-Jun
Affiliation:1. Department of Physics, Taiyuan Normal University, Jinzhong 030619, China;2. Institute of Opto-Electronics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China;3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract:Entanglement source with high entanglement degree is the guarantee for accomplishing the quantum information transmission and process with higher fidelity. Continuous variable Einstein-Podolsky-Rosen (EPR) entangled optical field with quantum correlation of amplitude and phase quadrature is a basic and important quantum resource in the quantum information science area, which can be obtained by a non-degenerate optical parametric amplifier (NOPA) operated below the threshold pump power. Because of the limitation of the imperfect performance of optical components in optical cavity, we should find efficient methods of implementing quantum manipulation to improve the entanglement degree of the entangled state of light. Connecting NOPA1 and NOPA2 in series, the entangled state of light output from the NOPA1 can be manipulated by NOPA2, and the entanglement degree can be enhanced under certain conditions. To improve the entanglement degree to a greater extent, the structure of the NOPA1 is chosen as a half-monolithic standing-wave optical resonator with the triple resonance of the pump and two subharmonic modes. The NOPA1 is able to output the entangled optical fields with an entanglement degree of 8.4 dB, which is the highest entanglement generated by a single device so far. The structure of the NOPA2 can be chosen as a standing-wave optical cavity or a four-mirror ring optical cavity. According to the different structures of the NOPA2, we theoretically design two kinds of optical systems with two cascaded cavities and compare the effects of the two optical systems on the continuous variable EPR entanglement cascaded enhancement in detail. Based on the above contrastive analysis, when the entanglement degree of the input optical fields is 8.4 dB and the transmissivity of the output coupler is lower, the structure of a four-mirror ring optical cavity for NOPA2 cannot enhance the entanglement degree, so the optical system including NOPA2 with standing wave cavity structure and the optical isolator with high transmission efficiency is appropriate. When the transmissivity of the output coupler and transmission efficiency of the optical isolator are higher, the structure of the NOPA2 should be chosen as a standing-wave optical cavity, otherwise the structure of the NOPA2 should be chosen as a four-mirror ring optical cavity. We also theoretically analyze the dependence of the correlation degree of output optical fields on physical parameters. The results show that under the conditions of higher input and output coupling efficiency, higher transmission efficiency and lower intro-cavity loss, the entangled state of light with higher entanglement degree can be obtained experimentally. This provides the reference for obtaining entangled optical fields with higher entanglement degree in the future.
Keywords:Einstein-Podolsky-Rosen entangled optical fields  manipulated optical cavity  entanglement enhancement
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号