首页 | 本学科首页   官方微博 | 高级检索  
     检索      

带碰撞双稳态压电俘能系统的俘能特性研究
引用本文:蓝春波,秦卫阳.带碰撞双稳态压电俘能系统的俘能特性研究[J].物理学报,2015,64(21):210501-210501.
作者姓名:蓝春波  秦卫阳
作者单位:西北工业大学工程力学系, 西安 710072
基金项目:国家自然科学基金(批准号: 11172234)资助的课题.
摘    要:双稳态俘能系统的运动常常会陷入单个势能阱中, 导致俘能效率降低. 为了解决这个问题, 本文提出了一类带碰撞的磁斥力双稳态压电振动能量采集系统. 建立了该碰撞双稳态系统的机电耦合方程, 分析了碰撞对双稳态系统动力学特性的影响. 研究了确定性激励和低强度随机激励下碰撞对系统响应特性和俘能效率的影响. 结果表明: 简谐激励下, 碰撞能够使得原双稳态系统的单阱小幅周期运动转变为双阱间的大幅运动, 从而有效地提高输出功率. 得到了低强度随机激励下, 不同碰撞间隙对系统动力响应特性和输出功率的影响规律. 对一个给定的随机激励, 存在一个最优的碰撞间隙, 此时碰撞能够将原双稳态系统单阱内的随机运动转化为频繁的双阱跳跃, 出现大幅值运动, 从而大幅提高了系统的俘能效率.

关 键 词:碰撞  双稳态系统  能量俘获  随机振动
收稿时间:2015-05-06

Vibration energy harvesting from a piezoelectric bistable system with two symmetric stops
Lan Chun-Bo,Qin Wei-Yang.Vibration energy harvesting from a piezoelectric bistable system with two symmetric stops[J].Acta Physica Sinica,2015,64(21):210501-210501.
Authors:Lan Chun-Bo  Qin Wei-Yang
Institution:Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:Random vibration energy is widely existing in the environment. To efficiently harvest it, many researchers have designed lots of harvesters up till now. A lot of research works have found that when a harvester with bistable piezoelectric energy is excited by stochastic forces, if the intensity of them is low, the system's motion will be trapped in a single potential well. This will result in a low output voltage. In order to overcome the difficult of it and improve the harvesting efficiency, we develop an impact facility with two stops and incorporate it to a bi-stable energy harvester. This design can improve the harvesting efficiency greatly. First the electromechanical coupling equations are derived based on the Euler-Bernoulli beam theory and Kirchhoff's law. Then, we analyze the symmetric stops' effect on the potential function and the elastic restoring force of the system. Results show that both the potential energy and the magnitude of restoring force will be enhanced when collision takes place. Furthermore, we investigate the impact's effect on the system's dynamic responses and efficiency at harmonic excitation. Results reveal that a well designed impact can transform an intrawell motion into an interwell, and then increase the output voltage. And the chaotic motion can be changed into the large amplitude periodic one. Then, the harvester's dynamic responses under random excitations at a low intensity are obtained by using Euler-Maruyama method. Results indicate that the collision gaps can greatly influence the efficiency of the energy harvester. Collisions between the beam and the stops can force the system to oscillate between two potential wells more frequently. According to the relationship between the gap and the standard deviation of output voltage, we know that there exists an optimal collision gap for a definite intensity of stochastic excitation. The bistable energy harvester with this optimal gap will oscillate between the two wells frequently, and output a large voltage. Moreover, the collision stiffness can influence the system's performance as well. With the increase of collision stiffness, the system will exhibit a more frequently jumping between the two potential wells, but the stiffness has a limitation, exceeding which it cannot increase the frequency of jumping and improve the output power any more. So by properly designing the collision gap and stiffness, the system can most frequently jump between the two wells with a large amplitude of displacement, hence can attain the highest harvesting efficiency.
Keywords:impact  bistable system  energy harvesting  random vibration
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号