首页 | 本学科首页   官方微博 | 高级检索  
     

忆阻器单阻态下的记忆电容行为及多态特性
引用本文:刘汝新,董瑞新,闫循领,肖夏. 忆阻器单阻态下的记忆电容行为及多态特性[J]. 物理学报, 2019, 68(6): 68502-068502. DOI: 10.7498/aps.68.20181836
作者姓名:刘汝新  董瑞新  闫循领  肖夏
作者单位:聊城大学物理科学与信息工程学院, 山东省光通信科学与技术重点实验室, 聊城 252059
基金项目:国家自然科学基金(批准号:61574071)和山东省泰山学者专项基金资助的课题.
摘    要:采用供体-受体类型的共聚物构建了Al/共聚物/ITO结构的有机记忆器件,并对其电流-电压(I-V)和电容-电压(C-V)特性进行了研究.结果表明:器件不仅表现出明显的记忆电阻特征,而且在单个电阻状态下还存在记忆电容行为,使器件呈现出两种电阻状态和与之对应的四种电容状态,具有电阻和电容的双参量记忆能力.在此基础上对器件的电容开关行为进行了电压幅值的调制,使器件出现了更多的电容状态,为多级存储的实现提供了一条有效途径.最后通过引入分子内部极化算符,建立了记忆电阻和记忆电容的关联性,给出了描述器件双参量多状态特征的矩阵模型.

关 键 词:记忆电阻  记忆电容  多态特征
收稿时间:2018-10-11

Memory capacitance behavior at single resistance state in memristor and multi-state characteristic
Liu Ru-Xin,Dong Rui-Xin,Yan Xun-Ling,Xiao Xia. Memory capacitance behavior at single resistance state in memristor and multi-state characteristic[J]. Acta Physica Sinica, 2019, 68(6): 68502-068502. DOI: 10.7498/aps.68.20181836
Authors:Liu Ru-Xin  Dong Rui-Xin  Yan Xun-Ling  Xiao Xia
Affiliation:Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
Abstract:With the advent of the information age, big data put forward higher requirements for capacity of storage devices. Compared with the method of reducing the size of the device to enhance the integration level, the high density storage of increasing the memory state of the single device will be very beneficial to solving the problem. In this work, we propose an idea of two-parameter and multi-state memory device involved in both resistance and capacitance operation levels. At first, a new donor-acceptor (D-A)-type copolymer is designed and synthesized. Then, the memory device of Al/copolymer/ITO structure is fabricated, and the current-voltage (I-V) and capacitance-voltage (C-V) curves are measured by a KEITHLEY 4200 semiconductor characterization system. The device not only displays the obvious memory resistance characteristics, but also has the memory capacitance behavior in single resistance state, which results in two resistance states and four capacitance states, so that the device has the capability of two-parameter and multi-state memory. In addition, the device shows more capacitance states after the switching behavior has been modulated by the voltage amplitude, which provides an effective method to control the memory states. In order to study the conductive mechanism of the device, we test the relationship between resistance and temperature. It is found that the resistance decreases with the increase of temperature, indicating that the device has the obvious semiconductor properties. Furthermore, the fitting results of I-V data show that the mechanism of resistance switching is in good consistence with the classical trap-controlled space charge limited current theory. The capacitance switching in single resistance state is closely related to the polarization characteristic of D-A structure in the copolymer film. The polarization force microscopy phase image shows that the copolymer film has obvious polarization and depolarization characteristics under the external electric field. Based on the polarization characteristics of copolymer, the correlation between memory resistance and memory capacitance is established by introducing a polarization operator of molecules, and the matrix model describing the two-parameter and multi-state memory characteristics is given. The above results show that the multi-state memory characteristics will store more information than 2-bits mode in a single cell, which will provide a reference for improving the storage density of information.
Keywords:memory resistance  memory capacitance  multi-state characteristic
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号