首页 | 本学科首页   官方微博 | 高级检索  
     检索      

铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对声衰减的影响
引用本文:罗忠兵,董慧君,马志远,邹龙江,朱效磊,林莉.铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对声衰减的影响[J].物理学报,2018,67(23):238102-238102.
作者姓名:罗忠兵  董慧君  马志远  邹龙江  朱效磊  林莉
作者单位:大连理工大学无损检测研究所, 大连 116085
基金项目:国家自然科学基金(批准号:51775087,51405061)资助的课题.
摘    要:研究了铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对超声散射衰减的影响.利用电子背散射衍射技术表征了两相的晶体取向及其位向关系,基于真实的铁素体形貌建立了二维声传播各向异性模型并利用时域有限差分法进行了计算,分析了不同位向关系、铁素体形貌特征对声衰减系数的影响规律并进行了实验验证.结果表明:铸造奥氏体不锈钢奥氏体晶粒中散布着形状复杂的铁素体,典型铁素体形貌为条状和岛状;铁素体与奥氏体的位向关系以Kurdjumov-Sachs关系为主,少量满足Nishiyama-Wassermann关系.对声传播过程进行计算,发现两相位向关系和铁素体形貌协同作用影响超声波传播,在较高检测频率(15 MHz)下对散射衰减的影响不能忽略.结合“原位”实验对奥氏体<101>柱状晶粒的声衰减影响因素进行了定量分析,发现对于单一铸造奥氏体晶粒,晶粒内部取向不均匀性、奥氏体-铁素体位向关系以及奥氏体晶粒内铁素体形态都是超声散射衰减的主要原因.

关 键 词:铸造奥氏体不锈钢  超声  铁素体  声衰减
收稿时间:2018-06-28

Orientation relationship between ferrite and austenite and its influence on ultrasonic attenuation in cast austenitic stainless steel
Luo Zhong-Bing,Dong Hui-Jun,Ma Zhi-Yuan,Zou Long-Jiang,Zhu Xiao-Lei,Lin Li.Orientation relationship between ferrite and austenite and its influence on ultrasonic attenuation in cast austenitic stainless steel[J].Acta Physica Sinica,2018,67(23):238102-238102.
Authors:Luo Zhong-Bing  Dong Hui-Jun  Ma Zhi-Yuan  Zou Long-Jiang  Zhu Xiao-Lei  Lin Li
Institution:NDT & E Laboratory, Dalian University of Technology, Dalian 116085, China
Abstract:Cast austenitic stainless steel (CASS) is widely used in important engineering components, which has a two-phase microstructure, i.e.austenite and ferrite. With slow cooling rate during solidification procedure, the austenite grain is coarse and the morphology of ferrite is complex. Due to the remarkable elasticity anisotropy of austenite, the resulting structural noise makes the recognition of macroscopic defects quite difficult in ultrasonic testing. To improve the signal-to-noise ratio, the ultrasonic testing frequency is generally small, about 0.5-2.0 MHz, and the ultrasonic scattering effect of ferrite is ignored. However, for submillimeter or even smaller defect and damage near the surface, the ultrasonic testing frequency should be increased to achieve a higher resolution. In these cases, how the ferrite influences the ultrasonic wave propagation behavior and the testing result is still not conclusive. Therefore, CASS Z3CN20-09M is studied as an example in this paper. Based on ultrasonic propagation modeling and “in situ” experimental design, the crystal orientation relationship between ferrite and austenite in CASS is studied and the factors influencing the ultrasonic scattering attenuation are clarified. The results would be helpful for clarifying the ultrasonic response mechanism of CASS and critical for the quantitative evaluation of small defects and early-stage damage. The orientation relationship between ferrite and austenite and its influence on ultrasonic scattering attenuation in CASS are studied. The crystal orientations and their relationships between two phases are characterized by the EBSD technique. A two-dimension anisotropic model is built based on the morphology of ferrite, and the ultrasonic propagation is calculated by the time domain finite difference method. The influences of orientation relationship and morphology on the longitudinal wave attenuation are analyzed and verified by “in-situ” experiments. Results show that ferrite grains with bar or island shape are distributed on the austenite grains. The orientation relationship between ferrite and austenite is mainly Kurdjumov-Sachs relationship, and only a minority of ferrite and austenite satisfy the Nishiyama-Wassermann relationship. Numerical simulation of the ultrasonic propagation under a testing frequency of 15 MHz indicates that the orientation relationships between two phases and ferrite morphologies present collaborative effects on the ultrasonic scattering attenuation, which could not be ignored. The factors influencing the ultrasonic attenuation in <101> austenite grain are quantitatively analyzed. It is found that in single austenite grains of CASS, the inhomogeneity of crystal orientation, the orientation relationship between austenite and ferrite and the ferrite morphology play an important role in determining the total ultrasonic attenuation. The results would provide supports for clarifying the ultrasonic response mechanism of CASS and developing the quantitative evaluation methods.
Keywords:cast austenitic stainless steel  ultrasonic  ferrite  ultrasonic attenuation
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号