首页 | 本学科首页   官方微博 | 高级检索  
     检索      

金衬底调控单层二硫化钼电子性能的第一性原理研究
引用本文:张理勇,方粮,彭向阳.金衬底调控单层二硫化钼电子性能的第一性原理研究[J].物理学报,2015,64(18):187101-187101.
作者姓名:张理勇  方粮  彭向阳
作者单位:1. 国防科学技术大学, 高性能计算国家重点实验室, 长沙 410072;2. 国防科学技术大学计算机学院, 长沙 410072;3. 湘潭大学物理与光电工程学院, 湘潭 411005
基金项目:国家自然科学基金重点项目(批准号: 61332003)资助的课题.
摘    要:基于密度泛函的第一性原理研究了金衬底对单层二硫化钼电子性能的调控作用. 从结合能、能带结构、电子态密度和差分电荷密度四个方面进行了深入研究. 结合能计算确定了硫原子层在界面的排布方式, 并指出这种吸附结构并不稳定. 能带结构分析证实了金衬底与单层二硫化钼形成肖特基接触, 并出现钉扎效应. 电子态密度分析表明金衬底并没有影响硫原子和钼原子之间的共价键, 而是通过调控单层二硫化钼的电子态密度增加其导电率. 差分电荷密度分析表明单层二硫化钼的导电通道可能在界面处产生. 研究结果可对单层二硫化钼晶体管的建模和实验制备提供指导.

关 键 词:二硫化钼  金衬底  电子性能  第一性原理
收稿时间:2015-03-24

Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study
Zhang Li-Yong,Fang Liang,Peng Xiang-Yang.Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study[J].Acta Physica Sinica,2015,64(18):187101-187101.
Authors:Zhang Li-Yong  Fang Liang  Peng Xiang-Yang
Institution:1. State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410072, China;2. School of Computer, National University of Defense Technology, Changsha 410072, China;3. School of Physics and Optoelectronics Xiangtan University, Xiangtan 411005, China
Abstract:Using first principles calculations within density functional theory, we investigate the electronic property of a single-layer MoS2 adsorbed on Au. All the quantities are calculated using the Vienna ab initio simulation package. Calculations are performed using the projector augmented wave method with the Perdew-Burke-Ernzerhof functional and a kinetic energy cutoff of 400 eV. The atomic plane and its neighboring image are separated by a 15 Å vacuum layer. The k-meshes for the structure relaxation and post analysis are 9×9×1 and 19×19×1, respectively. The spin-orbit coupling is considered in the calculation. The research includes the binding energy, the band structure, density of states (DOS) and electric charge difference density. Three contact modes between MoS2 (0001) and Au (111) are considered. When the atom S layer and the atom Au layer on the contacting interface have the same structure, the minimum binding energy and distance between MoS2 (0001) and Au(111) are 2.2 eV and 2.5 Å respectively. The minimum binding energy confirms that the absorption is unstable. The band structure demonstrates that the MoS2-Au contact nature is of the Schottky-barrier type, and the barrier height is 0.6 eV which is bigger than MoS2-Sc contact. By comparison with other metal contacts such as Ru(0001), Pd(111) and Ir(111), the dependence of the barrier height on the work function difference exhibits a Fermi-level pinning. But the MoS2 is so thin that the Fermi-level pinning must be very small. Maybe there is a metal induced gap state. DOS points out that the Au substrate has no influence on the covalent bond between Mo and S. The influence of the Au substrate is that it shifts the DOS of monolayer MoS2 left on the axis. The change of DOS results in the increases of electron concentration and electric conductivity. Other calculation points out that Ti substrate can excite more electrons. Electric charge density difference demonstrates that there are a few electric charges that transfer on the contact interface. The conducting path of monolayer MoS2 may emerge at the interface between Au and MoS2. In summary, the Au electrode is not the best electrode in the MoS2 device. The Ti electrode can excite more electrons from MoS2. The work function of Sc electrode is close to the affine of MoS2. The Fermi energy level of graphene can be tuned by external voltage. So the Ti, Sc and graphene will be the better electrodes for MoS2 device. Results of this study may provide a theoretical basis for single-layer MoS2 transistor and guidance for its applications.
Keywords:MoS2  Au substrate  electronic structure  first-principle
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号